
L-

LAWRENCE
LIVERMORE
N A T l O N A L
LABORATORY

UCRL-ID-155540

CALE Implementation Guide

J. Hagelberg

September 1 2003

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Table of Contents

Overview ... 2
Development Environment ... 2
Prerequisites .. 2
Compilation ... 2

To debug or to not debug .. 2
Compiler Flags .. 3

Compiler Definitions .. 3
Compiler Include Directories .. 3
Other Compiler Flags .. 3
Library Directories for Linker .. 4
Libraries for Linker ... 4
Other Linker Flags .. 4

Resource Files ... 4
Examples ... 4

Implementation Details ... 5
Naming Conventions .. 5
Motivation ... 5
Implementation Overview .. 5
Synchronization .. 6
How Drawing Works .. 6
Console Implementation Details ... 7

Keeping the Dialogs in Sync with Command Line .. 7

Uniform Handling of Different Command Types using Actions 8

Future Work .. 10

Calling CALE Functions from Dialogs .. 8

Reusing Code with Templates .. 10

Page 1 of 11

Overview
During the summer of 2003, a new version of CALE was written which uses

wxwindows, a platform-independent graphics library that also provides support for
threads, file handling, and many other things. When the project was started, there were
several different approaches considered. The first approach that was considered was to
create a version of CALE using the Windows API. This seemed like a logical choice
since the primary goal of the project was to create a version of CALE that would run on
Windows. However, if the graphics used in CALE were going to be completely
rewritten, it seemed to make more sense to do the new graphics programming using a
platform independent library. This way we would be able to get rid of the several
different versions of CALE that exist for various platforms and instead just use this new
version on all of the platforms. Out of all of the platform independent graphics packages
that were considered, wxWindows was chosen because it is open source, robust, and
provides support for drawing low-level graphics primitives like lines and polygons.

C++. The primary reason for this is that wxWindows is written in C++. C++ also makes
it much easier to design components that can be easily reused in other projects and
supports polymorphism and templates.

Many places in this document, you will see $ (WXDIR) . This is a macro that was
defined in the makefile and contains the wxWindows directory. For the environment
used in development, it was defined as c : /wxWindows-2 - 4 - 1.

This document provides more details about how the new version of CALE was
created and the reasoning behind them.

Even though the original CALE code was written in C, the new parts are written in

Development Environment
The code for this project was developed on a machine running Windows 2000

Service Pack 3. The compiler used was MinGW using gcc version 3.2.3. The code was
tested using the debug version of wxWindows 2.4.1 for Windows.

Prerequisites
In order to use the wxWindows version of CALE, you must have wxWindows

installed. wxWindows has been implemented for every major platform and can be
downloaded from http://www.wxwindows.org/. Additionally, ImageMagick is required
if you want to be able to create GIF, JPEG, or EPS files. ImageMagick is also open
source and can be downloaded from http://www.imagemanick.org/.

Compilation

To debug or to not debug
When compiling the wxWindows version of CALE, one needs to consider the

question of whether or not to include debug symbols in the executable. Furthermore, one
must also consider whether or not wxWindows was compiled in its own debug mode
using the W X D E B U G - flag. The latter is an issue because wxWindows will crash if
the debug and non-debug versions are mixed together. If wxWindows was compiled in

Page 2 of 11

its debug mode, then the source code must also be compiled using debug mode by
defining WXDEBUG- during compilation.

If you are unsure whether or not wxWindows was compiled using its own debug
mode, there is a fairly simple way to find out. When wxWindows is compiled using
WXDEBUG-, a “d” is appended to the end of its library names so that they have
names like 1ibwxbased.a. The non-debug version of this particular file is named
1ibwxbase.a. The libraries are usually located in a subdirectory called “lib” within the
wxWindows directory.

Now that you know how to use wxWindows in its own debug mode, you might
wonder what its advantages are. The main advantage is that defining WXDEBUG-
enables many run-time checks such as array bounds checking for wxArrays. These can
be very useful when debugging code. In the release version of CALE, of course,
wxWindows should not be used in its debug mode.

As you might imagine, whether or not WXDEBUG- is defined is completely
unrelated to whether or not debugging symbols are included in the executable. To
include them when using gcc, use the -g flag. Other compilers may use different flags.

Compiler Flags
There are a number of definitions, includes, libraries, and other flags that that need to

be present so that the wxWindows header files know what compiler and platform is being
used. The easiest way to find out what compiler flags you need is to compile one of the
wxWindows samples using the makefile they provide and then look at what definitions,
flags, includes, and so forth are required. Here is a listing of the ones used during
development. They are only meant to be a guide as to what compiler flags are needed.
Most of the flags here should work with any program compiled in a similar development
environment. Any flags that are specific to CALE have been indicated.

Corn p i ler Def i n it i on s
WXMSW-, WINVER=Ox0400, WIN95-, -GNUWIN32-, STRICT,
HAVE-W32API-H, WINDOWS, WXDEBUG-, WXWIN, IMAGEMAGICK,
UNIX, OPENHE, LITEND, IEEE64

The definitions WXWIN, IMAGEMAGICK, UNIX, OPENHE, LITEND, IEEE64
are all specific to CALE. The WXWIN definition tells the code that is should use
wxwindows. See the makefile for a complete description of the other flags.

Compiler Include Directories
$ (WXDIR) /lib/mswd, $ (WXDIR) /include,
$(WXDIR)/contrib/include, $(WXDIR)/src/regex,
$ (WXDIR) /src/png, $ (WXDIR) /src/jpeg, $ (WXDIR) /src/zlib,
$ (WXDIR) /src/tiff

Other Compiler Flags
-x c++ -fno-implicit-templates

Page 3 of 1 I

These flags are specific to CALE. The first flag (-x C++) tells gcc that all input
files should be treated as C++. The second flag (-fno-implicit-templates) tells
the compiler to only instantiate the templates that it is explicitly told to instantiate in the
code. Your compiler may require different flags to do these things.

Library Directories for Linker
$ (WXDIR) /lib, $ (WXDIR) /contrib/lib

Libraries for Linker
m, stdc++, gcc, odbc32 , wsock32 , winspool, winmm, shell32,
comct132, ct13d32, advapi32, ole32, loleaut32, uuid

Note that the wxWindows library is not included here. Whether or not you need to
include the wxWindows library here depends on how you compiled wxwindows. If you
compiled it as a shared library, include it. During development, the wxWindows library
was treated as just another object file. See the example linker command for how this is
done.

The only library here that is specific to CALE is “m.”

Other Linker Flags
-W1,--subsystem,console -mwindows

These flags tell the linker that we need to have a console window and that we are
using windows.

Resource Files

When a person writes a program targeted at the Windows platform, resource files are
generally used to store things like bitmaps, icons, accelerator tables, and other such
things. The same is true for the wxWindows version of C A E for Windows. When
C A E is being compiled on the Windows platform, the CALE resource file, cale.rc, must
be compiled into an object file that can then be linked with the other compiled libraries.
This can be done with the following command using windres.exe, which comes with
MinGW:

windres-exe --use-temp-file --include-dir $(WXDIR)/include
--define -WIN32- --define WIN95- --define GNUWIN32-
-i cale.rc -0 cale-resources.~

Examples

Example compiler invocation:

Page 4 of 11

I$ (WXDIR) /src/png -I$ (WXDIR) /src/ jpeg -I$ (WXDIR) /src/zlib -
I$(WXDIR)/src/tiff -DUNIX -DOPENHE -DLITEND -DIEEE64 -
DWXWIN -DIMAGEMAGICK -DWINVER=OXO400 -D_WIN95- -
D-GNUWIN32- -DSTRICT -DHAVE-W32API-H -D-WXMSW- -

DWINDOWS--DWXDEBUG- -x c++ -g -fno-implicit-templates
-c ActionList.cpp

Example linker invocation:

gcc -g -0 tale-exe {all object files} -Wl,--
subsystem,console -mwindows -L$(WXDIR)/lib -
L$(WXDIR)/contrib/lib $(WXDIR)/lib/libwxmswd.a -1m -lstdc++
-1gcc -1odbc32 -1wsock32 -1winspool -1winmm -1she1132 -
lcomct132 -1ct13d32 -1advapi32 -1ole32 -1oleaut32 -1uui.d

Implementation Details

Naming Conventions
In implementing CALE for wxwindows, the following naming conventions were

used:
Class variables are prefixed with m-
Static class variables are prefixed with sm-
#defined macros are in upper case
All class names are in title case
Function names are in title case with the exception of the first letter, which is
in lower case
For wxBoxSi zers: suffix is -h is it is laid out horizontally and -v if it is
laid out vertically

Mo tiva fion
When considering how to implement the wxWindows version of CALE, there were

several goals. The first goal was to keep CALE and the new graphics code as separate as
possible in order to minimize the coupling between the two. Another goal was to create
the new version using components that for the most part could be easily reused in other
parts of the code and in other projects. In order to make the code more maintainable,
code duplication was avoided whenever it was possible. An additional goal, especially
when it came to redesigning the Console, was to make the user interface as easy to use as
possible.

Implementation Overview
In the wxWindows version of CALE, there are always two threads: one for reading

and executing commands and one for the graphics. There are several reasons that two
threads are necessary. To begin with, the functions that read input from the keyboard are
by necessity blocking functions. They don’t return until Enter has been pressed. If the

Page 5 of 11

command line interaction took place in the same thread as the graphics window, the
graphics window would be completely unresponsive, and that is not acceptable. As a
practical matter, the original CALE code needs to be running in its own thread. This is
because integrating everything into one thread would involve rewriting the event-
handling loop in wxWindows to periodically do something related to CALE like reading
input from the command window.

Design patterns such as the observer pattern are used extensively in the wxWindows
version of CALE, especially in the Console dialog boxes. These patterns are used to
minimize coupling between classes and are discussed in detail later on.

wxWindows specific code in the original .c files is enclosed by an # i f de f WXWIN
directive.

cctl.c, ccur.c, cflash.c, cgl.c, cnsl.c, cparm.c, cpix.c, and cp1ot.c.

In order to keep open the option of compiling the code without wxwindows, all of the

As of this writing, the following original CALE files have been modified: ccmd.c,

Synchronization
One consequence of there always being two threads present is that there is now the

possibility that two commands could be executing simultaneously: one executed from
the Console and one executed from the command line. In order to prevent this from
happening, it is necessary to lock a mutex at the beginning and unlock a mutex at the end
of all functions that are called by the Console. As of this writing, this has not been done.
This issue is discussed more fully in the Future Work section. Another potential
synchronization issue can occur if CALE is trying to do drawing while the Graphics
Window is being repainted. This is because the drawing routines are not thread-safe.
This issue was resolved by locking a mutex before doing drawing calls and unlocking it
afterwards. Additionally, automatic repainting is disabled when CALE is executing a
“run” command.

How Ora wing Works
One of the primary goals in implementing the actual drawing in CALE was to keep

the drawing code and the original CALE code as separate as possible. In order to this, an
abstraction layer was created between CALE and the native wxWindows drawing
commands. The abstraction layer allows for greater code reuse by abstracting out
potentially complex drawing and allowing it to take place using a single function call.
This abstraction is achieved by creating one class for each drawing event that occured.
For example, there is a Rectangle class that knows how to draw a rectangle onto a
device context, a FilledRectangle class that knows how to draw a filled rectangle
onto a device context, and a Fontsizechanger class which knows how to change the
font size inside a device context. All of these classes are subclasses of a base class called
Graphic sEven t . Not all of the GraphicsEvent classes correspond directly to a low-
level drawing call. In fact, the drawing they do could be arbitrarily complex. That is
what makes the abstraction layer so nice. It hides the details about how the drawing is
actually accomplished and thus simplifies the task of implementing the drawing while at
the same time making it less error-prone.

In order to make the drawing actually happen, some graphics event, for example a
Fontsizechanger, is instantiated in the original CALE code and then passed to the

Page 6 of 11

DrawingFrame using either its apply or draw method (they are identical - I have
been using the convention that you draw anything that can be seen and you apply
everything else). This graphics event is eventually passed to the
CaleDeviceContext, which then instructs the graphics event to do some sort of
drawing onto it. In the case of the Fontsizechanger, the graphics event would
change the font size within the CaleDeviceContext. The following diagram
illustrates this process.

DrawingFrame

GnphicsPanel* panel;

apply(GraphicsEvent *event) {
pal->apply(event),

)

CaleDeviceContext *dc

dc->apply (event);

CaleDeviceContext 4
1 apply(GraphicsEvent ‘event) [

I GraphicsEvent I
A

applyTo(wxDC * dc) [
dc->SetFont(. .): dc->SetBrush(. ..).

Figure 1. Function calling sequence when drawing is performed.

Console Implementation Details

Keeping the Dialogs in Sync with Command Line
Another consequence of the command line interface and graphics window being in

separate threads is that we need to keep the dialog boxes synchronized with what is going
on at the command line. For example, if we have the pick dialog box open and the user
types “addvar den,” the pick dialog needs to be able to find out that “den” was added to
the list of pick variables. A similar situation occurs in places like the plotld dialog where
there are checkboxes showing whether different flags have been set such as if xlog.
Anywhere that a dialog displays a variable that can be manipulated via the command line,
the dialog needs to be able to know when the variable’s value has changed so that it can
update itself accordingly.

The way that this is accomplished is by using a design pattern called the observer
pattern. In the observer pattern, the first thing that you typically need is an abstract base
class that declares pure virtual functions that will be implemented by listeners to allow
them to be notified when some type of event happens. For example, one such pure
virtual function might be variableValueChanged(char* varName, int newvalue). This
base class is typically named something like MouseMotionListener or
VariableChangedListener. Then, you need write some classes that have this listener class
as a base class and that are therefore required to implement the virtual functions.
Somewhere else, usually in another class, you then have a list of listeners which have

Page 7 of 11

registered themselves as being interested in a certain type of event by adding themselves
to the list. When an interesting event happens in the class, say the changing of the value
of a variable, the class goes through its list of listeners and calls the virtual function on
each listener.

In CALE, the observer pattern is implemented slightly differently. CaleApp, the
main application class, contains two lists of listeners: one for when variable values
change and one for when pick events occur. In CALE, when interesting events happen,
the function in the original CALE code gets a pointer to the CaleApp class and then tells
it (or, more specifically, one of its listener lists) that an interesting event has happened.
That then causes all of the registered listeners to be notified. This notification process is
illustrated by the following diagram.

b

PickDialog
void varAdded(ch.ar*);
void varRemoved(char*);
void varsCleared(char*),

~ ~

in dialog

In original CALE code

PickListenerList" 1istenerList

clearpicvar(. . .) {
...
IistenerList->notifyVarsCleared();

Figure 2. Function calling sequence when the pick variables change.

Calling CALE Functions from Dialogs
Strange as it may seem, there are a couple issues associated with calling CALE

functions from within Dialogs. The main issue occurs because when you call CALE
functions from a dialog they are run in the graphics thread. This is a problem because
some of the CALE functions such as zoom and pick assume that they are not being called
from the graphics thread. These functions essentially put themselves to sleep until the
user has clicked on the drawing frame or done something similar. The graphics thread is
then unable to respond to button clicks and such since it is asleep. In order to call these
types of functions, a separate thread is created and the function is called inside that
thread. The other issue associated with calling CALE functions from within Dialogs is
synchronization, and that was discussed in the Synchronization section.

Uniform Handling of Different Command Types using Actions
Within the dialogs that make up the Console, there are a couple of list boxes

where each item in the list box is associated with some sort of a command. Among these
commands, there are many different command types. For example, some commands take

Page 8 of 11

arguments and some don’t. Some commands simply need to change the value of a
variable and refresh the display whereas others need to pass a command to C A E ’ s
parser. Furthermore, some commands must be executed in a separate thread. In order to
accommodate the different requirements of the different commands, the different things
that a command can do have been abstracted into different action classes. For example,
there is a class called FunctionCallingAction that calls a function, a class called
ValueSettingAction that sets the value of some variable, and a RefreshAction
class that refreshes the display if the AutoRefresh checkbox is selected. Each of these
classes is required to implement the functions onselected () , onDeselected () ,
and OnArgumentsEntered (const char*) . When an instance of the class is
created you specify the details about what should happen and whether the action should
occur when the items is selected, when it is deselected, when arguments are entered, or
some combination of those three.

essentially a list of actions. Actions are added to an Act ionLi s t by the dialog and
then, at the appropriate time, the actions are executed in the order they were added. The
Act ionLi s t provides support for executing its commands in a separate thread and also
allows for SkippingActions that can cause certain actions to be skipped if a certain
condition is true.

The way that this is implemented for the listboxes mentioned earlier is that the
dialog has an array of Act ionLi s ts. In other words, each item in the listbox has an
ActionList associated with it. When the item is selected, all of the onselected ()
functions are called, and when the item is deselected, all of the onDeselected ()
functions are called. The way that this works is illustrated by the following diagram.

Gluing all of these actions together is a class called Act ionLi s t, which is

When List Item Selected

actionlist->itemSeleted()

I t
I ,

Call appropriate function
for each action in the list

Actionfist

void removeAcrion(CommandAction *),

vlrtual void 0nSelec:edO.

virtual void deselected

3

Dialog Initialization

actionlist->addAction(aI);
actionList->addAction(a2);
actionList->addAction(a3):

set value of variable

Figure 3. Function calling sequence when a list item is selected.

Page9 of 11

Reusing Code with Templates
Templates are a very powerful feature of C++ that allow the creation of functions that

are essentially parameterized by the types of parameters that are used in them. When
these types are classes, templates can actually be used as a substitute to true
polymorphism. When you are using true polymorphism, you have a base class with at
least one virtual function and then have subclasses that override those functions. Then,
you can use the subclass objects as if they were objects of the base class type. When a
virtual function is called on the base class type, a virtual function table (vtable) is used to
determine what subclass function to call, and then this function is invoked.

using templates, there is no need for a base class or for virtual functions. When writing a
function, you simply use the parameterized type as if it was a base class type with certain
virtual functions. Then, any class you use as the parameter when the templated class is
instantiated is statically forced to implement those functions. If the functions are not
implemented, then the program will not compile. What the function does in the
templated class now depends on what the templated type is. This is sometimes referred
to as static or parametric polymorphism and is frequently used to accomplish
polymorphism without having the overhead of using virtual function tables.

There are a number of places where templates are used in CALE. Static
polymorphism is used in the Findpanel class. What the F i n d p a n e l basically does is
go through some sort of a list and cycle through the entries that match a certain string.
This list can be either a wxComboBox or a wxLi s t B o x , which are classes that are
implemented by wxwindows. Using static polymorphism allows functions with the same
name to be called on different classes without having to create a common base class for
the two list types. In this case, the classes wxComboBox and wxListBox both have the
methods Ge t s t r ing (i n t) , Se tse lec t ion (i n t) , and G e t C o u n t () .

Probably the most notable use of templates is in the different thread classes. These
thread classes allow functions with a varying number of parameters to be called from
within a separate thread. The thread dies as soon as the function is done executing. To
accomplish this, one thread class was created for each different number of parameters.
The type of the function and types of the parameters are template arguments. This allows
the same thread classes to be used with an arbitrary number of different parameter types.

Something very similar to this can be accomplished using templated classes. When

Future Work
There is still a bit of work that needs to be done on the wxWindows version of CALE

as of this writing. In the Synchronization section it was mentioned that all of the
functions that were called by the Console dialogs needed to be protected by a mutex.
This is because in the unlikely event that a CALE function is being executed in the
Console thread at the same time that a CALE function is being executed in the graphics
thread, the data structures could become corrupted if the two threads try to modify them
at the same time.

Essentially, every time a graphics event occurs, it is stored in a list. When repaint events
occur, the graphics events in the list are then executed again. The list is cleared when
clear events are processed. A more memory efficient way to repaint would be to just call

In addition, the current method of repainting uses a great deal of memory.

Page 10 of 11

f m () . Unfortunately, when that option was tried, a segmentation fault occurred during
repaint events and the program crashed. It would be worthwhile to look into the cause of
this. It may be related to synchronization. Another possibility is to use the Bli t (...)
function in the wxDC class (which CaleDeviceContext ultimately inherits from) to
efficiently copy the display window onto some other wxDC after each drawing event.
The contents of that device context could then be blitted back to the window whenever a
repaint event occurs.

However, saving the drawing events in a list does have its benefits, although none of
them are being exploited at the moment. The events stored in the list could easily be
applied to, for example, a wxPrinterDC in order to print the current contents of the
graphics window or to a wxMetaFi1eDC to create a metafile. It may be possible to
accomplish these things using the blitting approach, though.

Currently addvar, the function that adds pick variables, allows duplicate pick
variables to be added. That is probably not a good idea.

Additionally, the PlotlDDialog currently allows any curves to be highlighted. It
would probably be better to just show the curves which have been created and then create
a CurveModif icationListener which would allow the PlotlDDialog to find
out when curves are added or deleted and to update the list accordingly.

Page 11 of 11

3

a,
>

a,

m- L

6
 1 c') a, 0

m

I

L

a,
a

S

a,
cd
L

a,
>

a,
cn

L

+

+

L

L

8
 a

cn
3

cn
a,

+

-

U
 a

cn
cb
0

-

(3

u,

0

n
 S

3

.- S

0

S

3

L

W

I

a,
x
 I

a,
0

S

a,
'i3

S

a,
a.
a,
U

S

E

L

0

-

a, I

a S

0

X

a,
a,
>

L

a,
0

a,
a,
L

I

a,
0

a
I
.

L

a,
S

a,
cn
3

a,
N

S

a,
U

0

.
I

L

.
I

L

I

U

cd
a,
c

a,
0

cn
S

0

c
)

a,
cd

Q

a,
cf> 0

L

+

-

1

z

cn
c
)

c

Q

cd
m

a,
c

a,
cd
3

cn
Q

cd
c
)

S

W

0

m- L

1

1

-

Graphics Abstraction

DrawingFrame

-

apply(GraphicsEvent *event) {
panel->apply(event);

1

CALE

...
drawingFrame->appl y (new

Fontsizechanger(. . .));
...

appIy(GraphicsEvent *event) { 1
dc->appl y(event) ; I

apply(GraphicsEvent *event) {
event->applyTo(this);

I GraD hicsEvent I
virtual void applyTo(wxDC *); .

ipplyTo(wxDC * dc) {
dc->SetFont(. . .); I

1

BrushColor Changer
applyTo(wxDC * dc) {

dc->SetBrush(. . .);
1

5

Static Polymorphism

Can you see what all of these dialogs have in common?

6

3
 2 V r
l
a,
!4 cd
P4
a
 c -r
l

b
l

rn
-r

l
r
l

.. h

c,
c a, 3 a,
L8

c,
c a, 3
w a $4

i 0 u
 9 V a a, x
 u

-r
l

.. c, rn

v

n

c,
c a, 3 a,
d3

c,
c,

G

3

0

G

a,
u

c,
3
w a

a,

.. n

W

.. n

n

X a,
a
 c k 3 u

H

W

bl C

-r
l

k

c,
tn
c, .. n

W

c,

c, I
0

u1
-rl
r
l

a, 0

a
 c 3

0

k

rd 0

b

?
l

r
l
c 0

z \

\

.. n

X a,
a
 c H

c,
k

rd
c,
m

II
-. X a,
a
 c H

k

3

*
u

-
a
,

r
l

-r
l

.- 3
*

A

Observer Pattern

b

PickVarListener

Update list of
pick variables

in dialog

Vll7.llal V U l U V ~ l K G I l l U V G U \ c I I I d l . J r

PickDialog
void varAdded(char*);
void varRemoved(char *) ;
void varsCleared(char*);

void notifyVarAdded(char* varname);
void notifyVarDeleted(char* varname);
void notifyVarsCleared();

In original CALE code
PickListenerLi s t * lis tenerLis t

cleamicvar(. . .) {
..I

listenerlist->notifyVarsCle;
1
etc.

For all o in observers
call appropriate update
function on o

10

Command Pattern

When List Item Selected

actionlist->j ternselected0

DiaIog Initialization

actionlist->addAction(al);
actionLis t-7addAction (a2) ;
ac tionlist->addAc ti on (a3);
...

ActionList

void addAction(CommandAction *);
void removeAction(CommandAction *);

void itemSelected0;
Void itemDeselected0; I
void argumentsEntered(char*);

Call appropriate function
for each action in the list

virtual void onUeselected();

CommandAction

virtual void onSelected();

virtual void onArgumentsEntered(char*);

1 - I

I 1 P
ValueSettingAction

set value of variable
onselected0 {

call function

11

0
0

0
0

~
0

0

a

Pick v a r s
A

Results

13

Results
-

s Version

14

Q
.

A
.

